3.2 volt rechargeable battery for solar lights

Home|3.2 volt rechargeable battery for solar lights
3.2 volt rechargeable battery for solar lights2019-11-20T14:27:30+00:00

Project Description

Solar rechargeable batteries 3.2 volt

3.2 volt rechargeable battery that are very commonly used in today’s outdoor solar lighting and also in many custom battery pack assemblies. It is considered to be the latest and newest generation of Lithium Ion battery chemistry. It is best suitable to be solar rechargeable batteries 3.2 volt lighting systems.

3.2 volt rechargeable battery have a very long shelf life and can be recharged up to 2000 times (cycles). Providing 2000 lifespans sure does offer value for the purchase price! They will server you for MANY years to come!

LiFePo4 3.2 volt solar batteries don’t experience Memory Effect as can NiCD (Nickel Cadmium) cells.

In case you’re not familiar with what the term Memory Effect means, let us provide an overview here. First off, it’s a result. It’s the resulting reduced memory capacity of a battery from having charged it before was totally empty of power. LifePO4 chemistry batteries are immune from this effect. This means that you do not have to wait until they are DEAD, before recharging them. Charging them even when they are half full, will not change the memory level of the battery’s energy left. That means there is worry free charging maintenance. You can charge them anytime at all. That’s quite a convenience to many!

solar rechargeable batteries 3.2 volt

Why 3.2 volt rechargeable battery

3.2 volt battery for solar lights Temperatures

3.2 volt battery which is LiFePo4 cells, They offer a high discharge rate, are non explosive, are light weight and safe batteries overall as they do not incinerate or explode under extreme conditions and/or temperatures. Solar rechargeable batteries have to discharge and charging in the high temperatures environment. Up to 70℃.

2019-10-29T14:55:45+00:00

Prismatic LiFePo4 battery cells lithium iron phosphate battery 3.2v 50Ah

3.2v LiFePo4 battery modules are packed with 8 pcs 3.2v 50ah LFP cells in parallel. It's a semi ready battery pack allowed you DIY or reproduction for any project. Like custom RV lithium battery, Marine, Golf cart and so on.

What are the possible reasons why the battery and battery pack are not charged?2020-03-24T12:19:03+00:00

What would cause a battery or battery pack not to take a charge?

  • Zero voltage battery or zero voltage battery in the battery pack;

Lithium ion battery like polymer or 18650 li ion. They are very sensitive on low voltage. Normally, the battery or battery pack come with BMS, it has the function prevent over discharge. However, the bms circuit could be damaged for some reason. And battery cell fully discharged to 0. In this situation. The battery cell could be damaged permanently.

  • Battery pack connection error, internal electronic components, protection circuit abnormal;
  • Charging equipment failure, no output current;
  • External factors cause charging efficiency to be too low (e.g. very low or very high temperature).
battery pack are not charged

What to do when the battery pack does not charge

7.4v icr 18650 lithium ion battery packs

Step 1. Check the connections.
It may seem improbable, but the stability of any power connection is limited by its weakest link. Check the contacts and terminals for dirt, oils, corrosion, excessive wear or anything that can hamper a good, stable connection. This includes the battery contacts with application, in the charger, and on the battery itself.

Step 2. Reseat the battery in the devices.
It seems unlikely, but it happens. Some application require a tight fit with the battery and may seem attached when they are not fully locked in place. Make sure the battery is seated properly and the battery pack locks firmly in place when attaching it.

Step 3. Verify you are using the correct battery charger.
Using the wrong charger can not only prevent your  battery from charging properly, it could damage your equipment. It can also be potentially dangerous.

Step 4. Check to be sure the charger is plugged in and turned on.
Sound silly, doesn’t it? Well, it isn’t really, because it does happen. It’s one of the easiest mistakes to make when charging a fleet of batteries and one of the simplest to resolve.

Step 5. Reseat the  battery in the charger.
Battery seems like it’s connected to the charger when it’s not making contact at all. If it is a drop-in or desktop charger with a pocket or tray, the radio and/or battery may be able to sit in the tray without actually touching the contacts. If it is a plug-in type of charger, the plug may not be fully inserted. Be sure the radio/battery is properly seated or fully connected and the charging indicator light is on.

Step 6. Charge another battery of the same make and model in the charger.
Determine if the issue is really with the battery pack.

Step 7. Swap out the charger.
Sometimes a dead battery is the result of a dead charger.

Step 8. Charge the battery again.
Just to be sure, give it another chance.

Every battery has a limited life span determined by a number of different factors, including but not limited to how and where it is used, how much it is used and under what conditions. There is no set time table before a battery “kicks the bucket”. If your battery has reached its End of Life, it’s time to purchase a new one.

What are the main factors affecting battery cycle life ?2020-03-24T08:05:39+00:00

What are the main factors affecting battery life? 3 things you must know.

There are different reason affecting battery cycle life. Here we peak up some Main reasons to explain. So you can have a better understanding and how to take care of your batteries.

cycle life

Charge the battery:

When selecting a charger, it is best to use a charger with the correct termination charging device (e.g. anti-overcharge, negative voltage differential (-dV) cut-off charging and anti-overheating sensing) to prevent the battery shorten circle-life due to overcharge. In general, slow charging extends battery life more than faster charging. So, we suggest charging a battery with small current go gain longer life cycles.

 Discharge:

The depth of discharge is the main factor affecting battery life cycles, and the higher the depth of discharge, the shorter the battery life. In other words, reducing the depth of discharge can significantly extend the battery life. Because

For this reason, we should avoid over-setting the battery to very low voltages.

  • When the battery is discharged at high temperatures, it shortens the life of the battery.
  • If the design of electronic equipment can not completely stop all current, if the equipment is put on hold for a long time, without removing the battery, its residual current will sometimes cause the battery to be excessively consumed, resulting in excessive discharge of the battery.
  • When a battery with different electrical capacity, chemical structure or different charging levels is mixed, and a battery of different ages and sizes, the battery will also discharge too much, and may even cause anti-polar charging.
LiFePo4 battery cell cycle life

Storage:

If the battery is stored at high temperatures for a long time, it will attenuate its electrode activity and shorten its service life.

48 volt lithium ion battery pack
how to charge a 12 volt lithium battery2019-11-20T06:21:09+00:00

First check what kind of lithium battery you have. There are major 2 type of lithium battery in the market. 3.7v cell and 3.2v cell. And find out the full charge voltage. If the cell is 3.7v. Nomally full charge voltage is 12.6v( 3S lithium ion battery. when fully charged, each cell 4.2 volt). While if it is 3.2v cell. When it fully charged, the voltage is 3.65 volt. 12 volt lithium battery pack fully charged is 14.6 volt.( 4S 3.2 v cell). Make sure your charger voltage is compatable with the 12v lithium battery.

Please note that not all Li-ion batteries charge to the voltage threshold of 4.20V/cell. Lithium iron phosphate typically charges to the cut-off voltage of 3.65V/cell and lithium-titanate to 2.85V/cell. Some Energy Cells may accept 4.30V/cell and higher. It is important to observe these voltage limits.

Important to Lithium battery chargers

Lithium cells (18650, lipos, LiFePo4 etc.) which require the charging cycle CC-CV (constant current, constant voltage). The battery system may work for other types for batteries as well, as long as they wants to be charged with CCCV.

CC-CV varies the voltage to constantly deliver the current set by you. When the voltage reaches the battery’s maximum charge voltage, the current is gradually decreased so that the voltage does not exceed the set value.

3.2 volt solar batteries 16850

3.2v LiFePo4 cells

sony 21700

3.7v Lithium ion cells

Lithium battery Charger guide List

Nominal Voltage Battery type series Charging voltage
12v 3.7v lithium ion 3 12.6v
3.2v LiFePo4 4 14.6v
24v 3.7v lithium ion 7 29.4v
3.2v LiFePo4 8 29.2v
36v 3.7v lithium ion 10 42v
3.7v lithium ion 11 46.2v
3.2v LiFePo4 11 40.15v
3.2v LiFePo4 12 43.8v
48v 3.7v lithium ion 13 54.6v
3.7v lithium ion 14 58.8v
3.2v LiFePo4 15 54.8v
3.2v LiFePo4 16 58.4v
60v 3.7v lithium ion 17 71.4v
3.2v LiFePo4 20 73v
72v 3.7v lithium ion 20 84v
3.2v LiFePo4 24 87.6v

Certification:

Our prismatic cells already pass UL, MSDS, UN38.3, CE. These certification are available without ask customer to pay additional certification cost.

Shipping of Lithium Batteries:

Since our battery cells all passes MSDS, UN38.3 . And also we We can hold shipping documents.Ship our batteries by Air flight or by sea all is acceptable.

 

Warranty:

We provide 8 years for our batteries cells. 5 years for our battery packs. The warranty is only available for professional customer’s. Custom who without lithium battery knowledge and abuse with the batteries will be limited on warranty period.